Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We present the ensemble method of prescreening-based subset selection to improve ensemble predictions of Earth system models (ESMs). In the prescreening step, the independent ensemble members are categorized based on their ability to reproduce physically-interpretable features of interest that are regional and problem-specific. The ensemble size is then updated by selecting the subsets that improve the performance of the ensemble prediction using decision relevant metrics. We apply the method to improve the prediction of red tide along the West Florida Shelf in the Gulf of Mexico, which affects coastal water quality and has substantial environmental and socioeconomic impacts on the State of Florida. Red tide is a common name for harmful algal blooms that occur worldwide, which result from large concentrations of aquatic microorganisms, such as dinoflagellate Karenia brevis , a toxic single celled protist. We present ensemble method for improving red tide prediction using the high resolution ESMs of the Coupled Model Intercomparison Project Phase 6 (CMIP6) and reanalysis data. The study results highlight the importance of prescreening-based subset selection with decision relevant metrics in identifying non-representative models, understanding their impact on ensemble prediction, and improving the ensemble prediction. These findings are pertinent to other regional environmental management applications and climate services. Additionally, our analysis follows the FAIR Guiding Principles for scientific data management and stewardship such that data and analysis tools are findable, accessible, interoperable, and reusable. As such, the interactive Colab notebooks developed for data analysis are annotated in the paper. This allows for efficient and transparent testing of the results’ sensitivity to different modeling assumptions. Moreover, this research serves as a starting point to build upon for red tide management, using the publicly available CMIP, Coordinated Regional Downscaling Experiment (CORDEX), and reanalysis data.more » « less
-
Abstract. We present a framework for estimating concentrations of episodicallyelevated high-temperature marine ice nucleating particles (INPs) in the seasurface microlayer and their subsequent emission into the atmosphericboundary layer. These episodic INPs have been observed in multipleship-based and coastal field campaigns, but the processes controlling theirocean concentrations and transfer to the atmosphere are not yet fullyunderstood. We use a combination of empirical constraints and simulationoutputs from an Earth system model to explore different hypotheses forexplaining the variability of INP concentrations, and the occurrence ofepisodic INPs, in the marine atmosphere. In our calculations, we examine the following two proposed oceanic sources of high-temperature INPs: heterotrophic bacteria and marine biopolymer aggregates (MBPAs). Furthermore, we assume that the emission of these INPs is determined by the production of supermicron sea spray aerosol formed from jet drops, with an entrainment probability that is described by Poisson statistics. The concentration of jet drops is derived from the number concentration of supermicron sea spray aerosol calculated from model runs. We then derive the resulting number concentrations of marine high-temperature INPs (at 253 K) in the atmospheric boundary layer and compare their variability to atmospheric observations of INP variability. Specifically, we compare against concentrations of episodically occurring high-temperature INPs observed during field campaigns in the Southern Ocean, the Equatorial Pacific, and the North Atlantic. In this case study, we evaluate our framework at 253 K because reliable observational data at this temperature are available across three different ocean regions, but suitable data are sparse at higher temperatures. We find that heterotrophic bacteria and MBPAs acting as INPs provide only apartial explanation for the observed high INP concentrations. We note,however, that there are still substantial knowledge gaps, particularlyconcerning the identity of the oceanic INPs contributing most frequently toepisodic high-temperature INPs, their specific ice nucleation activity, andthe enrichment of their concentrations during the sea–air transfer process. Therefore, targeted measurements investigating the composition of these marine INPs and drivers for their emissions are needed, ideally incombination with modeling studies focused on the potential cloud impacts ofthese high-temperature INPs.more » « less
An official website of the United States government
